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transcriptional state by controlling for confounding inter-
specimen differences in cellularity. Well over 50 different 
algorithms or mathematical approaches been developed 
for deconvolution [1], and new ones are being proposed 
regularly.

Generally, these different approaches can have advan-
tages and disadvantages and offer varying levels of per-
formance depending on considerations unique to the 
specific experimental context, such as the cellular com-
plexity of the tissue under investigation and the desired 
informational output. In addition to selection of an 
algorithm, numerous other decisions need to be made 
when building a deconvolution pipeline for a specific 
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Abstract
Objectives Cellular deconvolution is a valuable computational process that can infer the cellular composition 
of heterogeneous tissue samples from bulk RNA-sequencing data. Benchmark testing is a crucial step in the 
development and evaluation of new cellular deconvolution algorithms, and also plays a key role in the process 
of building and optimizing deconvolution pipelines for specific experimental applications. However, few in vivo 
benchmarking datasets exist, particularly for whole blood, which is the single most profiled human tissue. Here, 
we describe a unique dataset containing whole blood gene expression profiles and matched circulating leukocyte 
counts from a large cohort of human donors with utility for benchmarking cellular deconvolution pipelines.

Data description To produce this dataset, venous whole blood was sampled from 138 total donors recruited at 
an academic medical center. Genome-wide expression profiling was subsequently performed via next-generation 
RNA sequencing, and white blood cell differentials were collected in parallel using flow cytometry. The resultant final 
dataset contains donor-level expression data for over 45,000 protein coding and non-protein coding genes, as well as 
matched neutrophil, lymphocyte, monocyte, and eosinophil counts.
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experimental application that can influence accuracy, 
including the choice of reference gene expression profiles 
or marker genes, and how to normalize or pre-process 
the bulk gene expression data [2–4]. In order to ensure 
optimal performance, ideally, these parameters are 
selected empirically via benchmark testing, which is typi-
cally performed using gene expression data from either in 
vivo, in vitro, or in silico samples comprised of a known 
mixture of cell types [5]. While it can be argued that the 
use of in vivo benchmarking datasets represents the gold 
standard, few in vivo benchmarking datasets exist, par-
ticularly for whole blood, which is the single most pro-
filed tissue in human transcriptomic investigations [6].

As part of a larger study which aimed to assess the 
drivers of peripheral blood gene expression patterns [7], 
our group recently used a combination of next genera-
tion RNA sequencing and flow cytometry to generate a 
unique dataset containing whole blood gene expres-
sion profiles and matched leukocyte counts from a large 
cohort of human donors. Given the current lack of in 
vivo benchmarking datasets that exist for whole blood, 
these data have value for secondary use in evaluating cel-
lular deconvolution pipelines.

Data description
To generate the dataset, parallel venous whole blood 
specimens were collected from 138 adult donors via 
K2EDTA and PAXgene vacutainers at admission to the 
Emergency Department at Dell-Seton Medical Center 
(Austin, TX) as described by our group previously [7]. 
K2EDTA vacutainers were used immediately for flow 
cytometry analysis, while PAXgene vacutainers were 
stored until downstream RNA isolation.

White blood cell differential was assessed in EDTA-
treated whole blood via four angle optical flow cytom-
etry. Relative neutrophil, lymphocyte, monocyte, and 
eosinophil counts were generated by dividing the abso-
lute counts of the aforementioned leukocyte subpopula-
tions by the absolute total leukocyte count. The final cell 
counts display a high degree of inter-sample heteroge-
neity in terms of overall leukocyte composition, and in 
the case of each cell type, the relative counts span well 
beyond the adult human reference range (Supplemental 
Fig.  1) [8], collectively suggesting that the final dataset 
captures adequate variance in cell counts to be generaliz-
able for use in deconvolution benchmarking.

Total RNA was isolated from PAXgene stabilized whole 
blood using spin column-based solid phase extraction. 
RNA purity and integrity were assessed using a combina-
tion of spectrophotometry and chip capillary electropho-
resis. Ribosomal RNA and globin mRNA-depleted cDNA 
libraries were prepared and subsequently sequenced 
via illumina sequencing using paired-end 150  bp reads. 
Reads were aligned to human reference genome GRCh38 

and the counts of mapped were reads summarized at the 
gene level. On average, approximately 40  million reads 
were generated per sample, and greater than 90% of reads 
map to the reference genome (Supplemental Fig.  2) [9]. 
Transcript from a total of 45,429 genes was detected, 
including a median of 15,425 protein-coding genes, 
4,822 lncRNA associated genes, 2,947 pseudogenes, and 
196 miRNA associated genes per sample (Supplemental 
Fig. 3) [10]. This suggests that the final dataset contains 
adequate genomic coverage to be compatible with a wide 
range of reference gene expression profiles and marker 
gene lists that could be employed in cellular deconvolu-
tion benchmarking tests.

Importantly, deconvolution of the final gene expres-
sion data via marker genes using a simple principal com-
ponents analysis-based approach [11] yields inferred 
cell counts that are highly correlated with the actual 
cell counts measured with flow cytometry (Spearman’s 
rho = 0.73–0.84; Supplemental Fig. 4) [12], indicating that 
the final gene expression data and flow cytometry data 
are correctly integrated terms of donor-level matching, 
and that the dataset has true utility for this particular sec-
ondary use.

All final data are available from the National Cen-
ter for Biotechnology Information (NCBI) Sequence 
Read Archive (SRA) via permanent accession num-
ber SRP429744 [13]. Raw sequencing data are available 
as .fastq files and can be downloaded individually or in 
bulk using the SRA run selector. Quality metrics associ-
ated with the source RNA, as well as basic demographic 
information and white blood cell counts for all donors 
are available via the attribute slots of linked BioSam-
ple records. RNA quality metrics include RNA integ-
rity numbers, 260:230 ratios, and 260:280 ratios, donor 
demographic information includes age, sex, race, and 
ethnicity, while white blood cell counts include rela-
tive neutrophil, lymphocyte, monocyte, and eosinophil 
counts, all under accordingly named attribute slots. All 
cell counts are listed as decimal formatted proportions. 
These linked BioSample attributes can be bulk down-
loaded as metadata using the SRA run selector when 
downloading sequencing data.

Limitations
Like any dataset, there are caveats and limitations that 
should be considered when planning for future use. Per-
haps most notably, it is important to consider that the 
dataset only contains cell count data for the four most 
abundant circulating white blood cell populations, as 
opposed to more granular cell populations which can be 
more extensively quantified via fluorescent flow cytom-
etry. With respect to future use for benchmarking cellu-
lar deconvolution pipelines, this may make the dataset 
best suited to evaluate the performance of marker-based 



Page 3 of 3O’Connell BMC Genomic Data           (2024) 25:45 

and reference-based deconvolution approaches such 
as CIBERSORT [14], xCell [15], and DeMix [16], as the 
cell types for which counts are to be inferred are dic-
tated a priori by the user. However, even in the instance 
of reference-free deconvolution approaches, the dataset 
could still be employed to assess how well the collective 
inferred counts of any more granular cell types that are 
output correlate with actual cell counts of the parent cell 
population.
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Table 1 Overview of files and datasets
Name of data 
file/data set

File types
(file 
extension)

Data repository and 
identifier (DOI or acces-
sion number)

Data-
set 1

Raw sequenc-
ing data and 
linked meta-
data including 
leukocyte 
counts

Raw read 
counts (.fastq); 
Sample meta-
data (.txt)

NCBI Sequence Read 
Archive (Accession num-
ber: SRP429744, https://
identifiers.org/ncbi/insdc.
sra:SRP429744) [13]

Data 
file 1

Supplemental 
Fig. 1

Figure (.pdf ) figshare (DOI: https://
doi.org/10.6084/
m9.figshare.25155521) [8]

Data 
file 2

Supplemental 
Fig. 2

Figure (.pdf ) figshare (DOI: https://
doi.org/10.6084/
m9.figshare.25155566) [9]

Data 
file 3

Supplemental 
Fig. 3

Figure (.pdf ) figshare (DOI: https://
doi.org/10.6084/
m9.figshare.25155569) [10]

Data 
file 4

Supplemental 
Fig. 4

Figure (.pdf ) figshare (DOI: https://
doi.org/10.6084/
m9.figshare.25155572) [12]
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